
The Axiom Book
Release 0

Laurens Van Houtven

May 26, 2013

CONTENTS

1 Introduction 3
1.1 What is Axiom? . 3
1.2 Why this book? . 3

2 Installation 5
2.1 Using pip . 5

3 Items 7
3.1 Attributes . 7
3.2 Creating items and accessing attributes . 7
3.3 Static, strong typing . 8
3.4 Defaults and unspecified values . 8
3.5 Type names . 9

4 Stores 11
4.1 Adding objects to stores . 11
4.2 Basic querying . 11
4.3 Finding unique objects . 12
4.4 Creating items unless they exist already . 12
4.5 Getting parts of the data . 12
4.6 Aggregate data: sums, counts, averages . 12

5 More advanced attribute comparisons 15
5.1 Checking if something is part of a fixed set . 15

6 Transactions 17

7 Powerups 19
7.1 Adaptation . 19
7.2 Adding powerups . 19
7.3 In-memory powerups . 20
7.4 Removing powerups . 20

8 Indices and tables 21

i

ii

The Axiom Book, Release 0

Contents:

CONTENTS 1

The Axiom Book, Release 0

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

1.1 What is Axiom?

Simply put, Axiom is a Python object database written on top of SQLite.

However, to just call it an “object database” doesn’t quite do it justice. Axiom has many other cool features,
including but not limited to:

• powerups, allowing you to pretty much tack arbitrary behavior on to stores and items within those stores
alike

• scheduling, allowing you to efficiently persist tasks to be executed at some point in the future

• upgrading, allowing you to transparently upgrade items in stores through pretty much any schema change
imaginable

Despite all of this, Axiom manages to be small enough to fit in your head, a property often sorely missed in
more complex systems. For example, there’s an obvious one-to-one mapping from any Axiom item definition to
a database schema.

1.2 Why this book?

Because Axiom is not always given the attention it deserves. Also, Axiom’s many useful features and properties
are not always obvious to the casual observer, and warrant some more explaining.

Additionally, a catastrophic fate has befallen the server that originally hosted all of the code and documentation,
meaning documentation is often harder to find than it needs to be. This book aims to alleviate that problem.

3

The Axiom Book, Release 0

4 Chapter 1. Introduction

CHAPTER

TWO

INSTALLATION

2.1 Using pip

Axiom is reasonably easy to install using pip. However, it does require its dependency, Epsilon, during setup.py
egg-info. That means that it needs to be available before pip tries to install Axiom. To make matters worse,
Epsilon, in turn, requires Twisted to be available for setup.py egg-info.

In short, you need to do:

$ pip install Twisted
$ pip install Epsilon
$ pip install Axiom

Unfortunately, due to the way pip works, pip install Twisted Epsilon Axiom or putting both of them
in a requirements file and installing it using pip -r does not work.

5

The Axiom Book, Release 0

6 Chapter 2. Installation

CHAPTER

THREE

ITEMS

An item is a persisted object with one or more attributes that make up a schema.

3.1 Attributes

Axiom comes with the usual suspects of attributes:

• text for (Unicode) text

• bytes for bytes

• integer for integer values

• pointXdecimal (X varying from 1 to 10) for decimals of varying precision

• ieee754_double for floating point values

• timestamp for absolute points in time

It also comes with a few slightly more advanced ones:

• reference which allows you to store a reference to any other Axiom item (not just those of a particular
type)

• textlist which allows you to store lists of (Unicode) text in one field

• path which allows you to store both relative and absolute paths

• inmemory which allows you to store non-persisted/non-persistable state on the item instance

All of these will be covered throughout the book.

3.2 Creating items and accessing attributes

Creating an item class is done by subclassing axiom.item.Item, and assigning at least one attribute from
axiom.attributes to a name in the class body:

from axiom import attributes, item

class Person(item.Item):
"""
A person.
"""
name = attributes.text()

You can then create instances of that item by calling the Item class and specifying the attributes as keyword
arguments. You can access the attributes on the item just like regular attributes:

7

The Axiom Book, Release 0

>>> alice = Person(name=u"Alice")
>>> assert alice.name == u"Alice"

3.3 Static, strong typing

Axiom item attributes are not just statically typed but also strongly typed. For example, you can’t assign a
bytestring to a text attribute:

>>> Person(name="a bytestring")
Traceback (most recent call last):

...
ConstraintError: attribute [Person.name = text()] must be (unicode string without NULL bytes); not ’str’
>>> alice = Person(name=u"Alice")
>>> alice.name = "another bytestring"
Traceback (most recent call last):

...
ConstraintError: attribute [Person.name = text()] must be (unicode string without NULL bytes); not ’str’

3.4 Defaults and unspecified values

You’re allowed to not specify an attribute, which sets it to None:

>>> anonymous = Person()
>>> assert anonymous.name is None

If you don’t want to allow None as a value, set allowNone=False on the attribute:

from axiom import attributes, item

class Coin(item.Item):
"""
A coin.
"""
attributes.money is the same thing as point4decimal
value = attributes.money(allowNone=False)

>>> Coin()
Traceback (most recent call last):

...
TypeError: attribute [Coin.value = money()] must not be None
>>> quarter = Coin(value=decimal.Decimal("0.25"))

You can also have default values. For example, we could have a petting zoo with bunnies, and bunnies start out
having been petted zero times:

from axiom import attributes, item

class Bunny(item.Item):
"""
A bunny in a petting zoo.
"""
timesPetted = attributes.integer(default=0)

>>> thumper = Bunny()
>>> assert thumper.timesPetted == 0 # Aww :-(
>>> thumper.timesPetted += 1
>>> assert thumper.timesPetted == 1 # Yay :-)

8 Chapter 3. Items

The Axiom Book, Release 0

Sometimes a default value isn’t enough, and you need a default value factory that gets called when the item gets
created. Let’s recite the alphabet:

import string
from axiom import attributes, item

letters = string.ascii_lowercase.decode("ascii")

class Letter(item.Item):
"""
A letter in the alphabet being recited.
"""
value = attributes.text(defaultFactory=iter(letters).next)
This creates an iterator over the list, and takes its ‘‘next‘‘ method.
Calling this method will produce the letters in sequence.

>>> a, b, c = Letter(), Letter(), Letter()
>>> assert a.value == "a"
>>> assert b.value == "b"
>>> assert c.value == "c"

3.5 Type names

Axiom item classes have a “type name”, which is the unique name used to identify instances of it in an Axiom
store, and distinguish them from other item classes. If you don’t explicitly specify a type name, one is auto-
matically generated based on the name of the class and the module it’s in. These are put into lower case and
concatenated with underscores. This is done because the type name will be a SQLite table name, and therefore
has to be a valid SQL identifier.

>>> Bunny.typeName
’bunny_bunny’

The module is called bunny. In this documentation, there are no modules above it; if your module is in a package,
it could be something like ’top_mid_leaf_class’.

There are some benefits to specifying an explicit type name. For example, you will be able to change the structure
of your package, or move items to different, independent packages.

You can specify the type name using the typeName class attribute:

>>> class MobileBunny(item.Item):
... typeName = "mobile_bunny"
... timesPetted = attributes.integer()
>>> MobileBunny.typeName
’mobile_bunny’

Note: There’s no ubiquitous standard for type names. These will map to SQL tables, so whatever your preference
is for those might win out.

3.5. Type names 9

The Axiom Book, Release 0

10 Chapter 3. Items

CHAPTER

FOUR

STORES

So far, we’ve created items, but never actually put them in a database. Axiom “databases” are called stores.

To create a store, just call axiom.store.Store(). By default, that will create an in-memory store. Obviously,
in-memory stores aren’t persisted.

>>> inMemoryStore = Store()

To create a persisted store, pass either a path as a string, or a twisted.python.filepath.FilePath to
the store constructor:

>>> persistedStore = Store("mystore")

4.1 Adding objects to stores

You can either set an item’s store when you create it, or by setting its store attribute later:

>>> store = Store()
>>> alice = Person(store=store, name=u"Alice")
>>> bob = Person(name=u"Bob")
>>> bob.store = store
>>> assert alice.store is bob.store is store

4.2 Basic querying

Once we have some objects in a store, we can query them. Simple queries take the item class you want to get
instances of, and the usual querying suspects:

• comparisons (filters)

• limits and offsets

• sorting

The result returned by a query is a generator, so we’ll call list on it to show its contents.

>>> people = list(store.query(Person, sort=Person.name.ascending))
>>> assert people == [alice, bob]
>>> person, = store.query(Person, sort=Person.name.ascending, limit=1)
>>> assert person is alice
>>> person, = store.query(Person, sort=Person.name.ascending, limit=1, offset=1)
>>> assert person is bob

11

The Axiom Book, Release 0

4.3 Finding unique objects

Since finding exactly one object is such a common pattern, there’s an easier shorthand for it called findUnique.

>>> person = store.findUnique(Person, Person.name == u"Alice")
>>> assert person is alice

Since you’re expecting to find a single object, findUnique will raise an exception if there is more than one:

>>> secondAlice = Person(store=store, name=u"Alice")
>>> store.findUnique(Person, Person.name == u"Alice")
Traceback (most recent call last):
...
DuplicateUniqueItem: (person.Person.name = u’Alice’, [...])

Similarly, it will raise an exception if there are none:

>>> store.findUnique(Person, Person.name == u"Nobody")
Traceback (most recent call last):
...
ItemNotFound: person.Person.name = u’Nobody’

4.4 Creating items unless they exist already

Sometimes, you want to create an object if it does not exist, or update an object if it does. Axiom calls this
findOrCreate.

>>> newAlice = store.findOrCreate(Person, name=u"Alice")
>>> assert newAlice is alice, "returns the existing object"
>>> charlie = store.findOrCreate(Person, name=u"Charlie")

4.5 Getting parts of the data

Often, you only want part of the data instead of the entire stored item using getColumn. (This will once again
produce a lazy iterator, so we will use list to consume it.)

>>> bugs = Bunny(store=store, timesPetted=1)
>>> fluffy = Bunny(store=store, timesPetted=2)
>>> thumper = Bunny(store=store, timesPetted=3)
>>> query = store.query(Bunny, sort=Bunny.timesPetted.ascending)
>>> assert list(query.getColumn("timesPetted")) == [1, 2, 3]

4.6 Aggregate data: sums, counts, averages

You can sum over all the attributes in a store:

>>> assert store.sum(Bunny.timesPetted) == 6

Usually, it’s more useful to do it over a query than over all items:

>>> query = store.query(Bunny, Bunny.timesPetted > 1).getColumn("timesPetted")
>>> assert query.sum() == 5

While you could also do this by using Python’s builtin sum function to get the same result. The principal difference
is that with the query method, the summing is actually done inside the database.

You can also count how many items there are in a query.

12 Chapter 4. Stores

The Axiom Book, Release 0

>>> assert query.count() == 2

You can also average values:

>>> assert query.average() == 2.5

Notice how we’re re-using the query object. Queries are lazy: they’re only executed when you actually need
an item. For example, if an item is created or modified so that it suddenly is affected by the query, you get the
appropriate result:

>>> bugs.timesPetted += 1
>>> assert query.count() == 3

4.6. Aggregate data: sums, counts, averages 13

The Axiom Book, Release 0

14 Chapter 4. Stores

CHAPTER

FIVE

MORE ADVANCED ATTRIBUTE
COMPARISONS

Axiom provides a few tools for more advanced querying patterns.

5.1 Checking if something is part of a fixed set

A common pattern is trying to find all items where some attribute is a member (or not a member) of some fixed
set. Axiom provides oneOf and notOneOf for this.

To demonstrate this, let’s create a store with some people in it:

>>> store = Store()
>>> audrey = Person(store=store, name=u"audreyr")
>>> pydanny = Person(store=store, name=u"pydanny")
>>> lvh = Person(store=store, name=u"lvh")

There’s a secret club for people who like coffee ice cream:

>>> secretClubMemberNames = [u"pydanny", u"lvh"]

We can create a comparison, which we’ll call inSecretClub, that checks if a person’s name is in the list of
secret club member names. Of course, you could just plug this into the query expression directly.

>>> inSecretClub = Person.name.oneOf(secretClubMemberNames)
>>> list(store.query(Person, inSecretClub, sort=Person.name.ascending))
[Person(name=u’lvh’, storeID=3)@..., Person(name=u’pydanny’, storeID=2)@...]

Additionally, there’s a super secret club for people who like pistachio flavored ice cream. Only lvh likes pistachio
ice cream. If we want to query all the people who don’t, we’d use notOneOf:

>>> doesNotLikePistachio = Person.name.notOneOf([u"lvh"])
>>> list(store.query(Person, doesNotLikePistachio, sort=Person.name.ascending))
[Person(name=u’audreyr’, storeID=1)@..., Person(name=u’pydanny’, storeID=2)@...]

And that’s all there is to it.

notOneOf and oneOf are supported by almost all attributes, except inmemory. That said, comparing floats
(ieee754_double) is probably not what you wanted – but that’s inherent to floats, not anything specific to
Axiom.

15

The Axiom Book, Release 0

16 Chapter 5. More advanced attribute comparisons

CHAPTER

SIX

TRANSACTIONS

Like any database worth its salt, SQLite supports transactions. Axiom exposes these through the store’s
transact method.

The transact method takes a function. That function will be run in a database transaction. The changes in the
function happen atomically (that is: either they entirely do or entirely don’t).

>>> store = Store()
>>> thumper = Bunny(store=store)
>>> bugs = Bunny(store=store)
>>> def petBunny():
... bugs.timesPetted += 1
... thumper.timesPetted += 1
>>> store.transact(petBunny)
>>> assert thumper.timesPetted == bugs.timesPetted == 1

Any uncaught exception raised by the transacted function will be reraised. When this happens, the changes are
reset to what they were before the transaction was initiated.

>>> assert thumper.timesPetted == 1
>>> def runIntoProblems():
... thumper.timesPetted += 1
... raise RuntimeError("fluffiness overload")
>>> store.transact(runIntoProblems)
Traceback (most recent call last):
...
RuntimeError: fluffiness overload
>>> assert thumper.timesPetted == 1

The transact method takes any amount of arguments (which are passed verbatim to the transacted function),
and will return the return value of the transacted function.

>>> def petBunnies(bunnies, times):
... totalPetsGiven = 0
... for bunny in bunnies:
... bunny.timesPetted += times
... totalPetsGiven += times
... return totalPetsGiven
>>> store.transact(petBunnies, [thumper, bugs], 2)
4

17

The Axiom Book, Release 0

18 Chapter 6. Transactions

CHAPTER

SEVEN

POWERUPS

Powerups are a fairly unique feature to Axiom. They provide a way of persisting adapters to interfaces.

Powerups are built on top of Zope interfaces. If you don’t know what they are, the short version is that they’re
objects that describe the API of other objects, without having any particular implementation.

7.1 Adaptation

Adaptation is a feature that’s present in several libraries, such as Twisted. Let’s say that you want an object
satisfying the IMailer interface (an interface for objects that allow you to send e-mail), and you currently have
a user object. Perhaps you could get an object that would let you send e-mail to a particular user by doing:

mailer = IMailer(user)

The basic idea that you can adapt an object to some interface, by calling the interface with that object, to get a
(usually different) object that satisfies the interface you want.

Axiom provides adaptation in the form of powerups. Powerups allow you to easily persist objects with pretty
much arbitrary behavior and allow you to add them to existing objects, without modifying them.

7.2 Adding powerups

For this example, we’ll create transformers that can turn into cars. First, we’ll define the interfaces: that is, we
define what you can do with robot and car objects:

class IRobot(interface.Interface):
def attack(target):

"""
Attacks the target.
"""

class ICar(interface.Interface):
def drive(location):

"""
Drives to location.
"""

We make two sample implementations:

class Transformer(item.Item):
name = attributes.text(allowNone=False)
damage = attributes.integer(allowNone=False)

def attack(self, target):
print "{s} hits {t} for {s.damage} damage!".format(s=self, t=target)

19

The Axiom Book, Release 0

class Truck(item.Item):
wheels = attributes.integer(default=18)

def drive(self, location):
return defer.succeed(None)

When you create just any Transformer, it can’t automagically turn into a car yet (that is, it’s not adaptable to
ICar). When you try to adapt it, an error is raised:

>>> store = Store()
>>> optimus = Transformer(store=store, name=u"Optimus Prime", damage=100)
>>> ICar(optimus)
Traceback (most recent call last):
...
TypeError: (’Could not adapt’, ...)

The store is required because powerups are persisted.

If you can turn any arbitrary IRobot into any ICar, you want a regular adapter registry, such as the one offered
by Twisted. In this case, we want to make it so that this particular transformer can turn into a car. Additionally,
we want that behavior to be persisted. To do this, we’ll be installing a powerup on the item:

>>> truck = Truck(store=store, wheels=8)
>>> optimus.powerUp(truck, ICar)

After that, we can adapt the transformer to be a car:

>>> assert ICar(optimus) is truck

7.3 In-memory powerups

Sometimes, particularly while experimenting or testing, it may be useful to use in-memory powerups instead of
regular powerups. These are not persisted, and die whenever the object dies.

>>> inMemory = Store()
>>> rodimus = Transformer(store=inMemory, name=u"Rodimus Prime", damage=50)
>>> hotRod = HotRod(store=inMemory, color=u"Red and yellow")
>>> rodimus.inMemoryPowerUp(hotRod, ICar)
>>> assert ICar(rodimus) is hotRod

7.4 Removing powerups

Powerups can be removed by the powerDown method.

>>> optimus.powerDown(truck, ICar)
>>> ICar(optimus)
Traceback (most recent call last):
...
TypeError: (’Could not adapt’, ...)

(Since it’s a crying shame that Optimus can’t turn into a truck, we’ll restore his abilities.)

>>> optimus.powerUp(truck, ICar)
>>> assert ICar(optimus) is truck

20 Chapter 7. Powerups

CHAPTER

EIGHT

UPGRADING SCHEMATA

Often, you’ll want to change the schema of an item. You might want to remove attributes, add attributes, or
some combination of the two. Axiom comes with strong built-in support for migrating your data across schema
upgrades.

If you’re executing these exercises by hand, keep in mind that whenever we re-open a store, you should close the
store before continuing. You can close the store by ending your interpreter session.

8.1 Schema versions and upgrader functions

A schema version is an integer describing the current revision of the schema. If you don’t specify a schema
version, your item’s default schema version is 1:

>>> class Lollipop(item.Item):
... flavor = attributes.text(allowNone=False)
... yummy = attributes.boolean(default=True)
>>> Lollipop.schemaVersion
1

An upgrader is a simple function that receives an old version of the item and is supposed to return a version of the
item with a schema version that’s one higher.

Note: Upgrader functions, like most migration logic, should never be removed from your code base.

8.1.1 Enabling upgrading behavior

The upgrading behavior is a service present in every Axiom store. To enable it, you should adapt the store to the
IService interface to get a service object, which you can then start. If that doesn’t make any sense to you yet,
don’t worry – it’s pretty easy:

>>> from twisted.application.service import IService
>>> theStore = store.Store()
>>> IService(theStore).startService()

Of course, generally, you’ll only do this on stores that are persisted – otherwise it doesn’t make much sense to be
upgrading in the first place.

8.2 A simple example: adding a field

A very common schema change would be to add a field. Let’s say we have a series of things you can order at a
coffee shop, each of which have a description and a price:

21

The Axiom Book, Release 0

from axiom import attributes, item

class ShopItem(item.Item):
typeName = "shop_item"

description = attributes.text(allowNone=False)
price = attributes.money(allowNone=False)

Let’s create a few instances of these:

>>> s = store.Store()
>>> from coffeeshop import ShopItem
>>> from decimal import Decimal
>>> fiveBucks = Decimal("5.00")
>>> ShopItem(store=s, description=u"Coffee", price=fiveBucks)
ShopItem(description=u’Coffee’, price=Decimal(’5.00’), storeID=1)@...
>>> ShopItem(store=s, description=u"Iced Coffee", price=fiveBucks)
ShopItem(description=u’Iced Coffee’, price=Decimal(’5.00’), storeID=2)@...
>>> ShopItem(store=s, description=u"Muffin", price=fiveBucks)
ShopItem(description=u’Muffin’, price=Decimal(’5.00’), storeID=3)@...

For analytics purposes, we’d like to also store whether or not a thing is a drink or food.

TODO: newcoffeeshop.py

8.3 Writing upgrade logic to change a value

Suppose you have a database with temperature measurements. The American engineer who originally produced
the measurements used degrees Fahrenheit.

from axiom import attributes, item

class Measurement(item.Item):
typeName = "measurement"

temperature = attributes.point4decimal()
pressure = attributes.point4decimal()

>>> s = store.Store(storePath)
>>> from measurements import Measurement
>>> measurement = Measurement(store=s, temperature=-100, pressure=100)
>>> measurement.schemaVersion
1

You decide that it would be better to change the unit from degrees Fahrenheit to Kelvins. Technically, we don’t
really want to change the database schema: the attribute type, point4decimal, is entirely appropriate for
temperatures in either unit. However, confusing units is potentially disastrous. 1

By exacting a schema change, Axiom will take care of all the conversions for you, and you know that any item
you use will have been converted, so there can be no confusion as to what unit a value is expressed in.

from axiom import attributes, item, upgrade
from decimal import Decimal

class Measurement(item.Item):
typeName = "measurement"
schemaVersion = 2

temperature = attributes.point4decimal()

1 Confusing different units for the same quantity was the core problem that caused the loss of the Mars Climate Orbiter.

22 Chapter 8. Upgrading schemata

https://en.wikipedia.org/wiki/Mars_Climate_Orbiter

The Axiom Book, Release 0

pressure = attributes.point4decimal()

def _upgradeMeasurementTemperature(old):
new = old.upgradeVersion("measurement", 1, 2)
new.temperature = ((old.temperature - 32) * 5 / 9) + Decimal("273.15")
return new

upgrade.registerUpgrader(_upgradeMeasurementTemperature, "measurement", 1, 2)

At this point, we end the process and reload the store.

>>> IService(s).startService()
>>> measurement.schemaVersion
2
>>> s.query(Measurement).count()
1
>>> s.findUnique(Measurement).temperature
Decimal(’199.81’)

8.4 Attribute copying upgraders

One common pattern for upgraders is that they’ll re-use most of the values the old item has.

TODO: write example

8.5 Deleting upgraders

Another common pattern for upgraders is to delete an item that was previously being stored.

TODO: write example

8.4. Attribute copying upgraders 23

The Axiom Book, Release 0

24 Chapter 8. Upgrading schemata

CHAPTER

NINE

INDICES AND TABLES

• genindex

• modindex

• search

25

	Introduction
	What is Axiom?
	Why this book?

	Installation
	Using pip

	Items
	Attributes
	Creating items and accessing attributes
	Static, strong typing
	Defaults and unspecified values
	Type names

	Stores
	Adding objects to stores
	Basic querying
	Finding unique objects
	Creating items unless they exist already
	Getting parts of the data
	Aggregate data: sums, counts, averages

	More advanced attribute comparisons
	Checking if something is part of a fixed set

	Transactions
	Powerups
	Adaptation
	Adding powerups
	In-memory powerups
	Removing powerups

	Indices and tables

